
12/06/00 1

Predicting and Controlling Resource Usage Predicting and Controlling Resource Usage
in an Active Networkin an Active Network

Stephen F. Bush and Amit B. Kulkarni (GE CRD*)
Virginie Galtier, Yannick Carlinet and Kevin L. Mills (NIST)

Livio Ricciulli (Metanetworks)

DARPA Active Networks PI Meeting December 6–9, 2000

*with assistance from Scott S. Shyne (AFRL), COTR for GE CRD contract

TEAM 8

12/06/00 2

Demonstration Team

Virginie Galtier, Active Application Modeling and Measurement
Yannick Carlinet, Active Node Calibration
Kevin L. Mills, Principal Investigator
Stefan D. Leigh, Statistical Data Analysis
Andrew Rukhin, Statistical Model Design

Stephen F. Bush, Active Virtual Network Management Prediction
Amit B. Kulkarni, Magician EE and Active Applications

Livio Ricciulli, Active Network Management Interface Design

12/06/00 3

Presentation Outline

z Relevance of the Demonstrated Technology

z Integration Requirements for the Demonstration

z Details about the Technologies underlying the Demonstration

z Demonstrations

� #1 Detect and Kill Malicious or Erroneous Packets

� #2 Demonstrate the predictive power of AVNMP when
combined with NIST CPU usage prediction models

z Accomplishments and Lessons Learned

z Future Research

12/06/00 4

Relevance of the Technology

FAULT RESILIENCY OVERLOAD PREDICTION

INTEROPERABLE MANAGEMENT OF HETEROGENEOUS RESOURCES

12/06/00 5

Integration Requirements

ABONE

ANET
Daemon
(Livio)

NIST CPU
Model

AVNMP AA

Magician AAs

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

50

100

150

200

Prediction Error Accuracy

PP

LP

Predictor

AA

Active
Audio

AA
Active
Audio

Magician EE
MIB

AVMNP and Magician
generate real-time web
visualizations

NIST CPU usage
model injected into
AVNMP

AVNMP predicts
number of active
packets and CPU
usage and updates
predicted MIB values

Magician EE updates
actual MIB values
and controls
execution of active
packets

ANETD loads
Magician EE

Sending
node

Fastest
Intermediate

Node

Destination
node

Slowest
Intermediate

Node

12/06/00 6

What’s Ahead

z What is AVNMP and how does it work? (Steve Bush)

z How is AVNMP integrated with the Magician EE? (Amit Kulkarni)

z How does NIST model CPU usage? (Kevin Mills)

z How are NIST CPU models integrated with Magician? (Amit Kulkarni)

z Does this integrated technology work?

� #1 Detect and Kill Malicious or Erroneous Packets (Amit Kulkarni)
� #2 Demonstrate the predictive power of AVNMP when

combined with NIST CPU usage prediction models (Steve Bush)

z What was accomplished and what lessons were learned? (Kevin Mills)

z What are some ideas for future research? (Kevin Mills and Steve Bush)

12/06/00 7

MIB holds both current and future state.MIB holds both current and future state.

Self prediction
Communication networks that can predict their own behavior!

What Is AVNMP?

Active Packet

Network
Management Client getnext 1.3.6.1.x.x.x.x.now

getnextresponse 1.3.6.1.x.x.x.x.future

Managed Object

MIB

State Queue (SQ)

12/06/00 8

¾Optimal management polling interval is determined based upon
predicted rate of change and fault probability

¾ Fault correction will occur before system is impacted

¾ Time to perform dynamic optimization of repair parts, service, and
solution entity (such as software agent or human user) co-ordination

¾Optimal resource allocation and planning

¾ “What-if” scenarios are an integral part of the network

¾AVNMP-enhanced components protect themselves by taking action,
such as migrating to “safe” hardware before disaster occurs

Some Uses for Self Prediction

12/06/00 9

Actual
System

(t)

Distributed Model
Prediction Capability

within/among Systems
(t+Lookahead)

Goal: Active Virtual Network Management Prediction

Deployment:
Best use of space and time

Space

Time

Injecting a Model into the Net

L-1 L-3

L-2

L-4

AN-5AN-1

AN-4

Real System

Virtual System

L-1 L-3

L-2

L-4

AN-5AN-1

AN-4
DP

LP
LP

LP

12/06/00 1007/07/00 11

Load
(packets/second)

Wallclock
(minutes)

LVT
(minutes)

20
40

20

0
2000
4000
6000
8000

07/07/00 11

� Prediction ends when preset look ahead is reached
� Previous predictions are refined as time progresses

Cyclic Prediction Refinement

Load
(packets/second)

Wallclock
(minutes)

LVT
(minutes)

20
40

20

0
2000
4000
6000
8000

12/06/00 11

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

50

100

150

200

Prediction Error Accuracy

Experiment involved demanding more
accuracy over time by reducing the error
between predicted and actual values,
however...

5 0 0 0 0 0 1 1 0 6 1 . 5 1 0 6 2 1 0 6 2 . 5 1 0 6 3 1 0 6
W a l l c l o c k m S

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

E x p e c t e d L o o k a h e a d m S P e r f o r m a n c e

…the tradeoff was loss in Look-ahead...

5 0 0 0 0 0 1 1 06 1 . 5 1 06 2 1 06 2 . 5 1 06 3 1 06
W a l l c l o c k m S

1

2

3

4

5

6

S p e e d u p P e r f o r m a n c e

…. and loss in speedup

Accuracy-Performance Tradeoff

Prediction Error

Look-ahead Speedup

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

0.2

0.4

0.6

0.8

1

ProportionOut of Tolerance Performance

… this required more out-of-tolerance messages...

Out of Tolerance Messages

12/06/00 12

AVNMP Architecture

Virtual Message
Generator

Management Interface

AA AA

Logical
Process

(Predictor)

Management Interface
Prediction
Attributes

[CPU,
bandwidth]

Virtual messages
Application packets

To neighboring
active applications

To neighboring
Logical Processes

EE

PP
LP

NIST CPU ModelLogical Process
Driving ProcessLoad Prediction

A
H-
1
3325DPDP
Driver

EE

12/06/00 13

AVNMP Algorithm
¾ Prediction performance continuously kept

within tolerance via rollback

¾ Time Warp-like technique used for
maximum use of space and time in virtual
system

¾ Rollback State Cache holds MIB future
values

¾ Active Networks and Active Virtual
Network Management Prediction: A
Proactive Management Framework, Bush,
Stephen F. and Kulkarni, Amit B.
Kluwer Academic\Plenum Publishers.
Spring 2001. ISBN 0-306-46560-4

¾ But how do AAs, such as AVNMP,
communicate with each other, and with
the EE? Two mechanisms:
� Event reporting
� SNMP communication

12/06/00 14

Resource
Manager

Magician Event Reporting Architecture

Event
Manager

Netlogger
Event

Manager
(event->Netlogger

format)

SNMP Event
Manager

(event -> MIB)

MIB

SNMP
Agent

AVNMP*

snmpwalk

Log files

Active Packets

Magician EE

Active Applications

register

register

event
info

event
info

SNMP
get/set/get-next

Legacy Applications

*note that AVNMP can run as a local or remote AA.

12/06/00 15

Legacy Application

Active SNMP Interface

SNMP
Port

SNMP
Client

AA

M
IB

 A
gent Interface

SNMP Agent

SmallState*

Get/Set

M
IB

 A
gent Interface

* Magician transient or soft state available to AAs

12/06/00 16

Overview of NIST Research

z Identified Sources of Variability Affecting CPU Time Use by
Active Applications

z Developed a Mechanism for Monitoring and Measuring CPU
Time Use by Active Applications

z Developed and Evaluated Models to Characterize CPU Use
by Active Applications

z Developed and Evaluated a Technique to Scale Active
Application Models for Interpretation among Heterogeneous Nodes

12/06/00 17

Sources of Variability

6112,0424414,7315122,800stat

7314,5605317,5916027,066socketcall

6212,3624314,3945022,609write

6312,6063712,3624319,321read

uspccuspccuspccSystem Call

GreenBlackBlue

6112,0424414,7315122,800stat

7314,5605317,5916027,066socketcall

6212,3624314,3945022,609write

6312,6063712,3624319,321read

uspccuspccuspccSystem Call

GreenBlackBlue

VARIABILITY IN EXECUTION ENVIRONMENT

VARIABILITY
IN

SYSTEM CALLS

Processor RAM Persistent

storage

Network

cards

Device

drivers

Scheduler Resources Management

Services

Network

Protocols

Physical layer

Virtual machine layer

OS layer

S1 S2 S3 SnActive Node OS system calls ...

SC1 SC2 SC3 SC4 SCmReal OS system calls ...

AA3

EE2:Magician (java)

AA4
AA1AA2

EE1:ANTS (java)

ANodeOS interface layer

Processor RAM Persistent

storage

Network

cards

Device

drivers

Scheduler Resources Management

Services

Network

Protocols

Physical layer

Virtual machine layer

OS layer

S1 S2 S3 SnActive Node OS system calls ...

SC1 SC2 SC3 SC4 SCmReal OS system calls ...

S1 S2 S3 SnActive Node OS system calls ...S1 S2 S3 SnActive Node OS system calls ...

SC1 SC2 SC3 SC4 SCmReal OS system calls ...SC1 SC2 SC3 SC4 SCmReal OS system calls ...

AA3

EE2:Magician (java)

AA4AA3

EE2:Magician (java)

AA4
AA1AA2

EE1:ANTS (java)

AA1AA2

EE1:ANTS (java)

AA1AA2

EE1:ANTS (java)

ANodeOS interface layer

ANETS ARCHITECTURE 843
167,830

479
159,412

534
240,269

Benchmark
Avg. CPU us
Avg. PCCs

jdk 1.1.6jdk 1.1.6jdk 1.1.6JVM

Linux 2.2.7Linux 2.2.7Linux 2.2.7OS

64 MB128 MB128 MBMemory

PentiumProPentium IIPentium IIProcessor

199 MHz333 MHz450 MHzCPU Speed

GreenBlackBlueTrait

843
167,830

479
159,412

534
240,269

Benchmark
Avg. CPU us
Avg. PCCs

jdk 1.1.6jdk 1.1.6jdk 1.1.6JVM

Linux 2.2.7Linux 2.2.7Linux 2.2.7OS

64 MB128 MB128 MBMemory

PentiumProPentium IIPentium IIProcessor

199 MHz333 MHz450 MHzCPU Speed

GreenBlackBlueTrait

12/06/00 18

Measuring AA Executions

Trace is a series of system calls and
transitions stamped with CPU time use

AA2

EE1:ANTS (java)

read write kill...
ANodeOS interface

OS layer
Physical layer

Generate
Execution Trace

Monitor at
System Calls

in Active Node OS

…
begin, user (4 cc), read (20 cc), user (18 cc),
write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user (18 cc), �
kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user (8 cc),
kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user (18 cc),
write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user (17 cc),
kill (20 cc), user (8 cc), end
…

12/06/00 19

Modeling AA Executions

Scenario A:
sequence = “read-write”,
probability = 2/5

Scenario B:
sequence = “read-kill”,
probability = 3/5

Distributions of CPU time in system calls
:

Generate
Active Application Model

Distributions of CPU time between system calls :

…
begin, user (4 cc), read (20 cc), user
(18 cc), write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user
(18 cc), kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user
(8 cc), kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user
(18 cc), write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user
(17 cc), kill (20 cc), user (8 cc), end
…

0 5 10 15 20

0.8

0.2

P

cc

read

write kill

0 5 10 15 20

0.67
0.33

cc

P
read-kill

write-end

begin-read read-write

kill-end

Consume
Execution Trace

12/06/00 20

Evaluating AA Models

Statistically Compare
Simulation Results

against Measured Data

Simulate Model with
Monte Carlo Experiment

The Average Absolute Deviation (in Percent) of Simulated Predictions from Measured Reality for
Each of Two Active Applications in Two Different Execution Environments Running on One Node

(Average High Percentile Considers Combined Comparison of 80th, 85th 90th, 95th, and 99th

Percentiles) –Results Given for Models Composed Using Three Different Combinations of Bin
Granularity (bins) and Simulation Repetitions (reps)

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50 bins-20000 reps100 bins-20000 reps

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50 bins-20000 reps100 bins-20000 reps

12/06/00 21

Scaling AA Models

AA model on node X:
read 30 cc
user 10 cc
write 20 cc

Model of node X:
read 40 cc
write 18 cc
user 13 cc

Model of node Y:
read 20 cc
write 45 cc
user 9 ccscale

AA model on node Y:
read 30*20/40 = 15 cc
user 10*9/13 = 7 cc
write 20*45/18 = 50 cc

z Each Node Constructs a Node Model using two benchmarks:
� a system benchmark program ⌫ for each system call, average system time
� for each EE, a user benchmark program ⌫ average time spent in the EE

between system calls
z To scale an AA Model select one Node Model as a reference known by

all other active nodes

12/06/00 22

Evaluating Scaled AA Models

Prediction Error Measured when Scaling Application Models between Selected Pairs of Nodes
vs. Scaling with Processor Speeds Alone

40331620GreenBlue

3329229BlueBlack
5141137BlackBlue

Route

3637183BlueBlack

4748363GreenBlue

5860494BlackBlue

Ping

Magician

53311523BlackGreen

1611113BlackBlue

131070.3BlueBlack

Mcast

454087BlueGreen
171453BlackBlue

3937114GreenBlack

141242BlueBlack

Ping

ANTS

Avg. High Per.MeanAvg. High Per.MeanNode YNode XAAEE

Scaling with SpeedsScaling with Models

40331620GreenBlue

3329229BlueBlack
5141137BlackBlue

Route

3637183BlueBlack

4748363GreenBlue

5860494BlackBlue

Ping

Magician

53311523BlackGreen

1611113BlackBlue

131070.3BlueBlack

Mcast

454087BlueGreen
171453BlackBlue

3937114GreenBlack

141242BlueBlack

Ping

ANTS

Avg. High Per.MeanAvg. High Per.MeanNode YNode XAAEE

Scaling with SpeedsScaling with Models

12/06/00 23

Implementing AA Models in Magician

Scheduler Resource
Manager

NIST CPU
Usage Model
data

Active Packets

Magician EE

Active
Applications

mean & variance
& high percentiles

Predictor

expected
running

time

CPU usage
monitoring

CPU usage
control

12/06/00 24

Demonstration #1 Overview

� Illustrate motivation behind CPU usage modeling

� Compare three policies to enforce limits on CPU consumption

� Show improvement of NIST CPU usage models over naïve
scaling (which is based solely on relative processor speeds)

Detect and Kill Malicious or Erroneous Active Packets

12/06/00 25

Topology for Demonstration #1

Audio stream (active packets)

All nodes on the ABONE and running the Magician EE

Sending
node

Fastest
Intermediate

Node

Destination
node

Slowest
Intermediate

Node

Green Black Red Blue

Detect and Kill Malicious or Erroneous Active Packets

12/06/00 26

Demonstration #1 Policy #1
Detect and Kill Malicious or Erroneous Packets

Demonstration compares three policies to enforce limits on CPU consumption

Policy 1: Use CPU time to live set to fixed value per packet

Malicious Packet dropped too late
(CPU use reached TTL)

TTL

Normal execution time CPU time “stolen”

Fastest
Intermediate

Node

Slowest
Intermediate

Node

Destination
node

Sending
node

Malicious
packet

Good
packets

Good
packets

Good packet dropped early
(CPU use reached TTL)

TTL

CPU time
“wasted”

Additional CPU
time needed

12/06/00 27

Demonstration #1 Policy #2
Detect and Kill Malicious or Erroneous Packets

Demonstration compares three policies to enforce limits on CPU consumption

Policy 2: Use a CPU usage model, but scaled naively based solely on CPU speed

Fastest
Intermediate

Node

Slowest
Intermediate

Node

Destination
node

Sending
node

Malicious
packet

Good
packets

Good
packets

Malicious Packet dropped too late
(CPU use reached predicted limit)

Needed
execution time

CPU time “stolen”

TTL
Predicted 99% CPU

Good packet dropped early
(CPU use reached predicted limit)

TTL
Predicted 99% CPU

CPU time
possibly “wasted”

Additional CPU
time needed

12/06/00 28

Demonstration #1 Policy #3
Detect and Kill Malicious or Erroneous Packets

Demonstration compares three policies to enforce limits on CPU consumption

Policy 3: Use a well-scaled NIST CPU usage model

Fastest
Intermediate

Node

Slowest
Intermediate

Node

Destination
node

Sending
node

Malicious
packet

Good
packets

Good
packets

Predicted 99%
CPU time

Malicious Packet dropped sooner
(CPU use reached predicted limit)

TTL

Needed
execution time

CPU time “stolen”

Good packet can complete

Actual CPU time

TTL
Predicted 99% CPU time

12/06/00 29

Summary of Demonstration #1
Detect and Kill Malicious or Erroneous Packets

High Fidelity Naïve Scaling

12/06/00 30

Demonstration #2 Overview

� Show that AVNMP can predict network-wide resource consumption

� Compare accuracy of AVNMP CPU usage predictions with and
without the NIST CPU usage models

� Illustrate benefits when AVNMP provides more accurate predictions

Predict Resource Usage, Including CPU Time,
Throughout an Active Network

12/06/00 31

Topology for Demonstration #2

Predict Resource Usage, Including CPU Time,
Throughout an Active Network

DPDP
Predictor

Driver
PP
LP

PP
LP

Sending
node

Fastest
Intermediate

Node

Destination
node

Slowest
Intermediate

Node

Green Black Red Blue

12/06/00 32

Demonstration #2
Predict Resource Use, Including CPU, Throughout an Active Network

Demonstrate predictive power of AVNMP and improvement in predictive power
when combining NIST CPU usage models with AVNMP

And so AVNMP can predict CPU usage in the network further into the future

With the NIST CPU usage model integrated, AVNMP requires fewer rollbacks

DPDP
Predictor

Driver
PP
LP

PP
LP

Sending
node

Fastest
Intermediate

Node

Destination
node

Slowest
Intermediate

Node

Green Black Red Yellow

12/06/00 33

Summary of Demonstration #2
Predict Resource Use, Including CPU, Throughout an Active Network

TTL CPU Prediction

Better CPU prediction model overcomes performance tradeoff limitations

12/06/00 34

Accomplishments
z Demonstrated the ability to detect and kill malicious or erroneous active

packets
� Illustrated motivation behind CPU usage modeling
� Compared three policies to enforce limits on CPU consumption
� Showed improvement of NIST CPU usage models over naïve scaling

z Demonstrated management of CPU prediction and control of packets on
per-application basis by an EE (Magician probably the first of its kind)

z Demonstrated the power of AVNMP to predict resource usage, including
CPU, throughout an active network

� Showed that AVNMP can predict network-wide resource consumption
� Compared accuracy of AVNMP CPU usage predictions with and

without the NIST CPU usage models
� Illustrated benefits when AVNMP provides more accurate predictions

z Developed MIB for CPU and AVNMP Management of an active node

z Integrated SNMP agents and reporting in an EE
� Provided user-customizable event reporting through multiple
mechanisms: Event Logger and SNMP

12/06/00 35

Lessons Learned
z DO NOT KEEP MODIFYING your demo code two days before the

demonstration, especially when you are depending on detailed
measurements of the code

� Every AA change requires execution traces to be rerun
� Every EE change requires execution traces and node calibrations to be rerun
� In addition, new models must be generated for each platform
� The good news – we were still able to do this

z NIST CPU benchmark tool should be made available in packaged form for
rapid and easy use.

z Active Networks Architecture requires a standard interface for any EE
to measure and control resource use by AAs

� Working with two different EEs required these issues to be addressed uniquely
for each EE

� Using one technique to measure CPU use for AA model generation and
another to measure CPU use in running AAs introduced unnecessary error

z Need to increase precision when CPU control mechanism terminates active packet
(will Real-Time Java solve this?)

z Introduction of another roll-back variable suggests that AVNMP can prove even
more efficient if roll-backs can be conducted independently on each class of variable

12/06/00 36

NIST Future Research

z Improve Our Models
� Model Node-Dependent Conditions
� Attempt to Characterize Errors Bounds
� Improve the Space-Time Efficiency of Our Models
� Continue Search for Low-Complexity Analytically Tractable Models
� Investigate Models that Continue to Learn

z Investigate Competitive-Prediction Approaches
� Run Competing Predictors for Each Application
� Score Predictions from Each Model and Reinforce Good Predictors
� Use Prediction from Best Scoring Model

z Apply Our Models
� CPU Resource Allocation Control in Node OS
� Network Path Selection Mechanisms that Consider CPU Requirements
� CPU Resource Management Algorithms Distributed Across Nodes

12/06/00 37

Denial of Service Attacks
Can a combination of AVNMP load prediction and NIST CPU prediction be

used to combat denial of service attacks?

Many small packets

NIST CPU
Large
CPU packets

AVNMP

Attacker

Legitimate Data

Target

Legit
User

12/06/00 38

z Network management today is
centralized…should be distributed

z Fault detection and correction are
generally manual activities -- at best
scripted…should be inherent to
network behavior

z Unstable/Brittle…should be
stable/ductile

z Management is external to the
network…should be inherent part of
the network

GE Future Research

Monitor &
Control

Management
Station

Managed Entities

Goal: Large Networks with Inherent Management CapabilitiesGoal: Large Networks with Inherent Management Capabilities
z Number of predicted objects will increase drastically -- many more than

simply load and CPU -- see a typical SNMP MIB for possible number of
predicted objects.

z Load and CPU have been demonstrated on a handful of nodes; but what
about thousands of nodes and perhaps multiple futures?

Today: Centralized, Manual, Brittle, External Management SystemsToday: Centralized, Manual, Brittle, External Management Systems

12/06/00 39

Desirable Properties of Future Network
Management Systems

Fault

Portion of Solution

Portion of Solution

Portion of Solution

Portion of Solution

z Identify faults within a complex
system of management objects

z Scale in number of objects and
number of futures

z Robust in the presence of faults
z Only necessary and sufficient

repair capability should exist in
time and space

Network Inherently Forms Fault Corrective ActionNetwork Inherently Forms Fault Corrective Action

Exceeding “normal” ranges indicates a fault and generates
attractive force needed to form corrective action.

12/06/00 40

New Theory of Networks Leads

Random (Healthy) incompressible Order (Multiple Faults) compressible

…to Example Applications such as Composition of State into …to Example Applications such as Composition of State into
Solution AttractorsSolution Attractors

No Attraction

Legacy
Networks

Active
Networks

Shannon

Entropy

Kolmogorov

Complexity

Fine-grain model
as active packet
is communication
media

Bits

Legacy
Networks

Active
Networks

Shannon

Entropy

Kolmogorov

Complexity

Fine-grain model
as active packet
is communication
media

Bits

Shannon

Entropy

Kolmogorov

Complexity

Fine-grain model
as active packet
is communication
media

Bits

New Theory

Attraction

AVNMP StreptichronsAVNMP Streptichrons

Algorithmic Information TheoryAlgorithmic Information Theory

ComplexityComplexity

EmergenceEmergence

